
3D Visualization of Color Image Histograms

Paula J. Reitan1

Department of Computer Science, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States

Abstract

Color quantization is a useful method for obtaining high-quality compressed images for storage and subsequent
distribution via the World Wide Web. The first step of most color quantization techniques is to create a histogram
of the colors in the truecolor image. The dramatic differences in time and space efficiency of various data
structures used to represent truecolor image histograms are visually explored in 3D. Spatial subdivisions use
buckets to store colors in a portion of the RGB cube. Linked lists are the typical data structure used for buckets;
we propose using red-black trees and treaps. Our visualizations highlight the clustering property of spatial
subdivision methods.

Keywords: 3D tree drawing, 3D Visualization, 3D data structures, color image histograms, color image
quantization.

1. Introduction

In color quantization a truecolor image is irreversibly transformed into a color-
mapped image consisting of K carefully selected representative colors. When
Heckbert proposed the color quantization problem in his seminal SIGGRAPH paper
[6], most graphic workstations had CRT monitors with an 8-bit frame buffer, capable
of displaying only K = 28 = 256 colors at a time. With the advent of the Internet and
multimedia eras, 24-bit frame buffers have become more commonplace; however, the
same has made the need for efficient ways to represent images more important. Color
quantization is a useful method for obtaining high-quality compressed images for
storage and subsequent distribution via the World Wide Web. For a survey of some
of the more popular color quantization techniques see [15, 20, 19 and 12].

The first step of most color quantization techniques is to create a histogram of the
colors in the truecolor image. Histogramming truecolor images is a basic component
of many statistical image processing techniques including color quantization. The
purpose of our color quantization research is to discover better heuristics for
constructing color quantizers by visualizing the histograms, animating the
quantization process, and visually comparing the resulting quantizers. In the process
of building the software to visualize truecolor image histograms, it was found that
portions of the software also serve nicely as an educational tool for illustrating the

1 Email: reitan@scs.usna.navy.mil

space and time requirements of various 3D data structures. The goal of this paper is
to present the pedagogical value of our aesthetically appealing visualizations of
truecolor image histograms.

2. Related Work

There are numerous sources of work related to visualization of data structures in the
field of graph drawing. An excellent annotated bibliography for theoretical and
applied graph drawing papers was written by Di Battista, Eades, Tamassia, and Tollis
[3]. In addition, Ding and Mateti surveyed [4] the data structure literature and
provided a nice set of aesthetic criteria for drawing data structure diagrams in 2D.
They proposed an algorithmic framework for drawing data structures using a
weighted preference system to resolve conflicts between various aesthetic criteria.
Although their drawings were strictly 2D, many of their aesthetic criteria are valid or
extend nicely to 3D. Reingold and Tilford also proposed an algorithm for
aesthetically drawing binary trees in 2D [14].

Over the past several years, more and more researchers have been exploring
advances in 3D graphics hardware and software to produce graph drawings in 3D.
Cone trees, a method for drawing hierarchical graphs in 3D, were first introduced by
Robertson, Mackinlay and Card [16] as part of their Information Visualizer. The
cones are formed by making each internal node of the tree the apex and placing their
children around its base. All cones at the same level have the same diameter base,
and the diameter of cone bases reduces with depth. The body of each cone is shaded
transparently to aid the user in identifying subtrees. Garg and Tamassia describe
GIOTTO3D, a system for visualizing hierarchical structures in 3D [5]. Whereas in
2D graph drawing, the hierarchical structure of a graph is typically indicated by the y-
coordinate of the vertices, Garg and Tamassia propose using the z-coordinate, thus
providing more flexibility in placing vertices in the xy-plane. Najork and Brown
demonstrate the power of their 3D animation system, Obliq-3D, by drawing a k-d
tree, for k=2, in 3D [10]. In this paper we provide a 3D visualization of a k-d tree,
for k=3. Since presenting our visualizations at COMPUGRAPHICS ’97 [13], the
author has become aware of unpublished work by Bokhari, Crockett and Nichol [2]
which provides a visualization of truecolor histograms much like our cloud
representation.

3. Truecolor Image Histograms

A digital image is digitized spatially so that it can be displayed on a raster display
using W columns and H rows of pixels. A color digital image is digitized in color as
well so that it can be displayed on a CRT monitor using the hardware-oriented RGB

color space. The truecolor images discussed in this dissertation are stored in Targa's
Truecolor image format [9]. The Targa format represents each image pixel using 8-
bits of precision in each of the red, green, and blue color directions:

RGB = { (r, g, b) | r, g, b ∈ ¯256 }. (1)

Thus RGB denotes the set of 2563 (16M) possible colors in a truecolor image2. It is
generally accepted that truecolor images require a minimum of 8-bits of precision in
each of the red, green, and blue color directions. A truecolor image f is defined as a
total function:

f: ¯W x ¯H
 → C, (2)

where f(x, y) is the RGB color of the pixel at column x, row y of image f and C = { c1,
c2, …, cN } ⊆ RGB. Thus C is the set of N unique colors present in image f. The
histogram Hf of a truecolor image f is now defined as a total function:

Hf : RGB → £ (3)

where Hf (c) is the number of pixels in the image f with color c. Note that Hf does not
contain any spatial information about the pixels in f. Clearly, () HWcH

Cc
f ⋅=∑

∈

.

W⋅H N8 N7 N6 N5

Windsails 393,216 86,008 72,663 26,233 5,873

Max 393,216 216,200 132,703 41,802 8,442
Min 65,536 856 848 821 490

Average 329,045 49,934 34,673 11,525 2,652

Table 1. Truecolor image test set statistics.

As part of our color quantization research we established a test set of 27 truecolor
images. In Tables 1-6 we provide statistics specifically for the truecolor image
Windsails ([17], Color Plate A) and summary statistics for the entire 27 image test set.
Column N8 of Table 1 summarizes the number of unique colors typically found in
truecolor images. By cutting the (8-p) least significant bits from each of the R, G, B
components, the RGB color space is uniformly quantized to a smaller color space
denoted as RGBp. The number of unique RGBp colors in a truecolor image will be
denoted as Np. Table 1 shows how such bit-cutting reduces the number unique colors

1 The RGB color space is chosen simply because it is the hardware-oriented color space used by most display devices.

However, the RGB color space is not ideal because it is not perceptually uniform. That is, two pairs of equidistant RGB

colors may not be perceived as being “equally different”.

in truecolor images, thus saving space at the expense of accuracy. Many color
quantization researchers find RGB5 to be a satisfactory tradeoff between space, time,
and accuracy. However, Shufelt [18] showed that working in RGBp<7 can noticeably
impair the quality of the quantized images. Thus, part of our color quantization
research is to discover methods for making it more practical to work in full 24-bit
precision.

4. The Data Structures

In this section, we will now examine various data structures used to store truecolor
histograms. All of the histograms presented in this paper are for the truecolor image
Windsails displayed in Color Plate A. Our 3D visualizations show the dramatic
impact the choice of data structure has on time and space efficiency.

As part of our color image quantization research, we are developing a C++ program
called LindyHop. All of the histograms presented in this paper were produced using
LindyHop. LindyHop allows the user to view truecolor images, store truecolor image
histograms in one of several different data structures, and to interactively choose
among numerous algorithms to render the histograms in 3D space using a perspective
projection. Thus, we are able to present more data in less screen space. To aid the
user in viewing the 3D histogram, LindyHop provides interactive rotation, translation,
and scaling.

4.1 Performance Analysis

Given the large number of colors found in typical truecolor images, we are in search
of a space efficient 3D histogram data structure that also supports fast insertion of
pixels, query for Hf, and rendering. Therefore, the following performance measures
are of interest: 3

• Space utilization (λ) measures how well the data structure uses allocated memory.
• Insertion time (TI/tI) measures how much time is required to insert a pixel into the

histogram.
• Build time (TB/tB) measures how much time is required to build the histogram.
• Query time (TQ/tQ) measures how much time is required to search the histogram

for all image pixels.
• Render time (TR/tR) measures how much time is required to render a 3D

visualization of the histogram.

2 Analytical times will be represented by T; empirical times by t. Empirical times given in this paper

are in seconds and were gathered on a SUN Ultra 1 with 128 MB of memory running under a light
user load.

• The height (h) of hierarchical structures provides an upper bound for insertion and
query times.

Because the shape of the dynamic data structures discussed in this section depend
on the distribution of the colors in the image and the order in which they are inserted,
it is difficult to analytically determine their average case performance. Thus, we will
resort to empirical timing and structural data to measure the performance of these
data structures.

4.2 3D Array

Perhaps the most intuitive data structure class for RGB data is a 3D array of
2px2px2p natural numbers used to store Hf. Thus TI = Θ(1) and TQ = Θ(W⋅H). Table
2 and Color Plates B and C highlight the two main drawbacks of 3D arrays: low space
utilization and high render times. Table 2 shows that space utilization (λ = Np

/|RGBp|) becomes unacceptably low for p > 5. Since it requires Θ(|RGBp|) time to
create and initialize a 3D array and Ο(W⋅H) time to insert the W⋅H pixels of f, TB =
Θ(|RGBp| + W⋅H). Thus, as p increases, the time to initialize the 3D array becomes a
more significant term of TB.

Color Plate B illustrates the low space utilization of 3D arrays by visually showing
that a great deal of the color cubes space is not used. Additionally, the depth cues
provided by the bounding cube’s interpolated color and perspective tapering width
help the user to properly orient the 3D visualization. To gain more insight into the
nature of the histogram, Color Plate C shows how the sizes of the histogram
cell may be scaled by log2(Hf). To render a 3D array, we must traverse the entire 3D
array and render each non-empty cell. Thus, TR = Θ(|RGBp| + Np). Experimentally,
we found that the size of |RGBp| prohibits interactive speeds for p > 6.

So we conclude that from a space and time perspective, 3D arrays are an excellent
choice for RGBp≤5. However, when greater accuracy is required (RGBp>5), we need a
dynamic data structure whose space utilization and render time scales better with
respect to p.

RGB8 RGB7 RGB6 RGB5

λ tB tQ λ tB tQ λ tB tQ λ tB tQ
Windsails 0.0051 9.050 4.510 0.0346 5.520 4.440 0.1001 4.880 4.380 0.1792 4.700 4.350

Max 0.0129 9.120 4.540 0.0633 5.590 4.450 0.1595 4.890 4.380 0.2576 4.700 4.360
Min 0.0001 4.730 0.740 0.0004 1.310 0.720 0.0031 0.850 0.720 0.0150 0.780 0.720
Avg 0.0030 8.132 3.748 0.0165 4.628 3.707 0.0440 4.056 3.664 0.0809 3.925 3.643

Table 2. 3D array statistics for the image test set.

4.3 Binary Search Trees

In this section we will discuss three forms of binary search trees (BSTs) and will
use them as bucket structures for the spatial subdivision techniques discussed later.
The nodes of BST histograms are ordered pairs, (c ∈ RGBp, count ∈ £), where count
= Hf(c). BSTs require that a total order exist for its elements. The following function
converts c ∈ RGBp into a unique unsigned integer:

key (c) = (c.b << 16) | (c.g << 8) | c.r. (4)

The key function is used to order the nodes of BST histograms. Color Plates D-H
show the histogram of sailboats stored in three different forms of BSTs: traditional,
AVL, and treap. We draw an arbitrary binary tree in 3D by introducing a natural
extension to the 2D drawing algorithm implemented in LEDA [7]. Our binary tree
drawing algorithm implements the following aesthetics:

• Nodes on the same [odd/even] level are aligned in the [x/z] direction.
• On [odd/even] levels, left subtrees are positioned to the [left/behind] their parent;

right subtrees are positioned to the [right/in front].
• Parents on [odd/even] levels are centered in the [z/x] direction between its two

children.
• Odd level edges between [left/right] subtrees and their parents are [light

blue/blue]; even level edges are [light green/green]. This use of color helps the
user to orient the visualization in 3D space.

• Subtrees are drawn isomorphically and symmetrically.

Color Plate D highlights the drawback of using a traditional BST: the height of the
BST is unnecessarily large because the BST is very unbalanced. Red-black and AVL
trees are alternative approachs to building BSTs such that the resulting BST is height-
balanced. Color Plates E and F illustrate the height-balancing property of red-black
and AVL trees.

Let T be a BST histogram of a true color image. Let dT be the depth of a node in
the BST. We define the structural query time of T:

∑
∈

⋅⋅+=
Tn

TTQ countncndT .)1)((, (5)

where cT = 2 is the number of comparisons made at each node. Hence, TQ is the
average number comparisons required to search T for all the pixels in f. Since Hf(c)
accurately represents the probability that c will be queried, we would like to construct
our BSTs such that TQ is minimized. Clearly if all colors appeared equally often, then
height-balancing would be the solution; otherwise, we may want to sacrifice height in
order for nodes with high counts to be near the top of the tree. The nodes of the AVL

tree histogram drawn in Color Plate F have been scaled by log2(Hf). Many of the
more popular colors of this AVL tree are near the bottom of the tree, thus increasing
its structural query time. Using dynamic programming, one can statically build such
an optimal BST in Ο(Np

3) [11]. The drawback to the dynamic programming
algorithm is that the colors and their counts need to be known a priori.

Ideally, we would like to dynamically build optimal BSTs. This leads us to treaps
[8]. Our truecolor histogram implementation of treaps simultaneously maintains the
BST property on key (node.c) and the max heap property on node.count. Thus, the
most popular color in the histogram will always be stored at the root. The empirical
results given in Table 3 show that red-black trees and AVL trees build the most
efficient BSTs and that the red-black trees are the most efficient to build. However,
for small RGB5, the distribution of the counts on the colors is such that treaps become
competitive with red-black trees. Color Plate G illustrates how treaps are built such
that colors with large counts are higher in the tree.

RGB8 RGB7 RGB6 RGB5

h tB tQ h tB tQ h tB tQ h tB tQ
Windsails 96 37.67 65.45 83 35.45 59.81 65 29.32 49.13 45 22.83 38.31

Max 703 55.13 108.44 529 50.98 96.77 347 41.23 77.71 184 29.59 55.56
Min 38 5.12 9.55 38 4.53 7.96 38 3.15 5.35 36 2.19 3.33BST
Avg 131 30.61 54.72 113 29.27 52.19 82 23.80 42.11 54 17.68 29.97

Windsails 19 20.86 28.51 19 20.27 28.29 18 17.76 25.81 15 15.25 22.32
Max 21 22.16 29.31 21 21.17 28.95 19 18.38 25.94 16 16.04 22.60
Min 11 2.45 3.31 12 2.44 3.65 11 2.11 2.99 10 1.94 2.70Red-

black Avg 18 15.77 22.23 18 14.96 21.46 16 13.08 19.25 13 11.29 16.42

Windsails 19 32.08 28.56 18 31.18 28.56 17 25.94 25.63 14 22.25 22.14
Max 21 34.38 29.49 20 32.27 29.14 17 27.21 26.18 15 22.75 22.14
Min 11 3.75 3.76 10 3.43 3.17 10 3.15 3.03 10 2.81 2.52AVL
Avg 17 23.96 22.10 16 22.38 21.56 15 19.22 19.15 12 16.79 16.58

Windsails 72 27.7 40.59 67 26.77 39.63 56 21.22 30.31 42 16.45 23.57
Max 703 31.87 54.19 192 29.36 44.74 102 25.76 41.64 66 17.72 27.30
Min 29 2.10 2.64 30 2.05 2.55 29 1.88 2.32 18 1.75 2.08Treap
Avg 93 21.21 31.56 65 18.84 27.04 53 15.57 22.15 39 12.13 16.49

Table 3. BST statistics for the image test set.

4.4 Spatial Subdivision Methods

The spatial subdivision methods discussed in this section are based on a
decomposition of RGBp into smaller pieces called partitions or cells. Many strategies
exist for determining the structure of spatial subdivisions. 2D arrays are a uniform
subdivision of RGBp into 2px2p partitions, each of which contains at most 2p colors.

Hierarchical subdivisions such as octrees and k-d trees are constructed by recursively
partitioning RGBp into smaller and smaller subdomains. We begin with one cell (the
root at depth 0) whose domain is RGBp and whose elements are stored in a single
bucket. When the number of elements in a bucket exceeds the maximum bucket size
(B), the cell is partitioned into smaller pieces, and the elements of the overflowing
bucket are inserted into the unique partition whose domain includes the element. The
space utilization of spatial subdivisions is defined as λ = O/M, where M is the number
of cells and O is the number of non-empty cells.

4.4.1 2D Arrays
Equation 5 is used to calculate the structural query time of 2D arrays by interpreting

the depth of a node to be its position in the linked list (starting at position 0) and
letting cT=1. The empirical results given in Tables 2 and 4 show that on average (5 ≤
p ≤ 8), the space utilization of 2D arrays is 638% better than 3D arrays; however, this
improved λ incurs larger build and query times. Table 4 shows that doubly linked
lists, red-black trees and treaps are fairly competitive data structures for 2D array
buckets. For our data image set, red-black trees performed the best in terms of build
time, and treaps were the best in terms of query time. Hence, if the histogram is built
once, but queried many times, treaps may be the better choice for a bucket structure.

RGB8 RGB7 RGB5

λ tB tQ λ tB tQ λ tB tQ
Windsails 0.379 9.52 8.38 0.473 10.75 10.98 0.546 9.94 9.92

Max 0.433 11.06 10.12 0.781 13.73 14.190 1.000 9.94 9.92
Min 0.009 1.50 1.17 0.034 1.32 1.170 0.128 1.18 1.14List
Avg 0.228 7.85 7.20 0.341 8.61 8.749 0.448 7.10 7.05

Windsails 0.379 9.76 8.47 0.473 10.06 9.68 0.546 8.05 8.98

Max 0.433 10.65 9.43 0.781 10.78 10.810 1.000 8.58 9.62
Min 0.009 1.42 1.15 0.034 1.32 1.170 0.128 1.16 1.17Red-

black Avg 0.228 7.75 7.08 0.341 7.747 7.786 0.448 6.47 7.03

Windsails 0.379 11.57 8.17 0.473 12.05 9.14 0.546 9.82 8.09

Max 0.433 12.75 9.22 0.781 13.27 10.420 1.000 10.13 8.61
Min 0.009 1.66 1.16 0.034 1.57 1.150 0.128 1.45 1.18Treap
Avg 0.228 9.28 6.96 0.341 9.35 7.338 0.448 7.93 6.55

Table 4. 2D array statistics for the image test set.

4.4.2 Octrees
Octrees are a hierarchical subdivision method which subdivides the cells (octants)

using three cut-planes which are orthogonal to each of the R, G, B axes. The point at
which the three cut-planes intersect is application dependent. The octrees discussed in

this section use the octant’s center; thus, the octant is subdivided into eight equal-
sized subcubes.

Color Plates I and J illustrates the adaptive nature of octree partitioning. The
number of cells contained in the octree depends on B and the distribution of the colors
in 3D space. Sparse regions of RGBp are represented by few cells, while dense
regions are represented by many. Additionally, the octree clusters neighboring colors
in the RGB cube into a common octant. This clustering is a desirable property for
color quantization and is the basis of the oct-cut algorithm proposed by Roytman and
Gotsmann [15].

Let S be an octree histogram of a truecolor image. Let dS be the depth of a bucket
in S. We define the structural query time of S:

() ()()∑∑
∈ ∈

⋅⋅++⋅+=
Sb bn

TTSSQ countncndcbdT ,.1)(1)((6)

where cS = 4. The empirical results given in table 4 and 5 show that octrees obtain
better space utilization than 2D arrays; but once again, this improved λ comes at the
cost of larger build and query times. Table 4 shows that red-black trees and treaps are
fairly competitive data structures for octree buckets.

RGB8 RGB7 RGB5

λ tB tQ λ tB tQ λ tB tQ
Windsails 0.797 45.09 23.9 0.723 44.27 23.34 0.721 36.31 20.73

Max 0.833 46.40 25.15 0.780 48.96 29.46 0.812 41.04 25.68
Min 0.416 4.57 2.31 0.360 5.49 3.44 0.421 3.82 2.08List
Avg 0.685 35.36 18.37 0.645 34.18 19.10 0.669 26.24 16.14

Windsails 0.797 27.17 15.77 0.785 26.11 16.01 0.709 17.23 13.93
Max 0.833 29.29 16.45 0.828 27.49 16.40 0.832 18.01 14.71
Min 0.416 2.80 1.930 0.416 2.47 1.96 0.488 1.99 1.80Red-

black Avg 0.685 20.84 12.84 0.679 19.35 12.75 0.691 13.28 11.32

Windsails 0.797 28.37 15.11 0.785 27.05 14.89 0.709 17.27 12.22
Max 0.833 31.20 16.10 0.828 29.03 15.74 0.832 18.39 13.77
Min 0.416 2.81 1.90 0.416 2.44 1.82 0.488 2.00 1.70Treap
Avg 0.685 21.74 12.15 0.679 20.08 11.91 0.691 13.33 9.99

Table 5. Octree statistics for the image test set, B=64.

4.4.3 k-d Trees
The hierarchical method used to subdivide k-d tree cells is much more flexible than

the octree method. Instead of subdividing the cells with three cut-planes, only one
orthogonal cut-plane is selected. Various methods exist for determining which axis to
cut and where to position the cut-plane. The k-d trees discussed in this section were

constructed by cutting the axis with the largest range at its center. Balasubramanian
and Allebach [1] use k-d trees to perform fast pairwise nearest neighbor searches.
Their k-d trees use linked lists as the bucket structure and are built by inserting (color,
count) pairs from a previously built 2D array histogram. Linked lists were a
reasonable choice, because they prequantized the image data and fixed the maximum
bucket size at 8. We propose using larger maximum bucket sizes, and hence using
red-black trees and treaps as the bucket structure. In addition, we build the k-d tree
histograms directly from the truecolor images.

Color Plates I-L illustrate how much more adaptive k-d trees are than octrees. The
shapes of the k-d tree cells vary and adapt to the statistics of the histogram, thus
enabling the cells of the k-d tree to better cluster neighboring colors in the RGB cube.

By letting cS=2, Equation 6 is used to calculate the structural query time of a k-d
tree. All of the k-d trees summarized in Table 6 had optimal space utilization.
However, tables 5 and 6 show that k-d trees require more time to build and query than
octrees. Table 6 shows that red- black trees and treaps are competitive data structures
for k-d tree buckets, but that red-black trees are better, particularly for p ≥ 7.

RGB8 RGB7 RGB5

M tB tQ M tB tQ M tB tQ
Windsails 544 30.49 19.58 461 28.85 19.40 34 18.74 16.73

Max 1366 38.01 20.89 832 29.98 20.17 50 18.88 16.73
Min 6 3.450 2.45 6 3.09 2.43 3 2.51 2.10Red-

black Avg 334 22.39 15.44 232 20.27 15.27 17 13.95 13.09

Windsails 544 34.95 20.83 461 32.75 20.16 34 18.9 15.36

Max 1366 45.85 24.27 832 35.11 22.31 50 21.44 17.03
Min 6 3.31 2.30 6 2.89 2.32 3 2.33 2.07Treap
Avg 334 25.65 16.47 232 22.87 15.46 17 14.38 12.17

Table 6. k-d tree statistics for the image test set, B=256.

5. Summary

We have made a visual exploration of the space and time requirements of 3D data
structures used to store truecolor image histograms. We have also seen the clustering
property of spatial subdivisions. We proposed using treaps and red-black trees
instead of doubly linked lists and BSTs for spatial subdivision bucket structures. We
discovered that for our image test set, red-black trees and treaps proved to be
competitive bucket structures for histograms built using spatial subdivision
techniques, but that red-black trees were the best overall when p ≥ 7 is desired.

Next we hope to visually discover better heuristics for color quantization by
incorporating our visualizations of truecolor image histograms into animations of
color quantization techniques. We plan to make our animations available to other
researchers via the World Wide Web.

Since presenting this paper at COMPUGRAPHICS ’97 [13] we have made several
key implementation changes which have resulted in a significant reduction in the
empirical timings: 1) the histogram class hierarchy was simplified, 2) the number of
functions declared as virtual was reduced, and 3) the RGB class was changed to
contain an array of three unsigned chars vice three unsigned chars . For
instance, the time now required to build a BST for Windsails in RGB8 has been
reduced from 37.67 to 12.49 seconds. These improvements will be reported in a
future paper.

Acknowledgements

The author is grateful for the generous support provided by the United States Naval Academy,
without which this research would not be possible. The author also thanks Dr. William D. Withers for
introducing her to the interesting field of color quantization. The author is extremely appreciative of
the thoughtful encouragement Dr. Andrew T. Phillips and Dr. Harold P. Santo provided her.

References

[1] Raja Balasubramanian and Jan P. Allebach, A New Approach to Palette Selection for Color Images, The Journal of
Imaging Science and Technology. 17(6) (December 1991) 284-90.

[2] Shahid H. Bokhari, Thomas W. Crockett, and David M. Nichol, Binary Dissection: Variants & Applications, ICASE 97-
29, Instititue for Computer Applications in Science and Engineering, Hampton, Virginia, 1997.

[3] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis, Algorithms for Drawing Graphs: an
Annotated Bibliography, Computational Geometry: Theory & Applications. 4 (1994) 235-82.

[4] Chen Ding and Prabhaker Mateti, A Framework for the Automated Drawing of Data Structure Diagrams, IEEE
Transactions on Visualization and Computer Graphics. 16(5) (May 1990) 543-57.

[5] Ashim Garg and Roberto Tamassia, GIOTTO3D: A System for Visualizing Hierarchical Structures in 3D, in Symposium
on Graph Drawing '96 Proceedings, LNCS-1190, (Berkeley, California, 1996) 193-200.

[6] Paul S. Heckbert, Color Image Quantization for Frame Buffer Display, Computer Graphics. 16(3) (July 1982) 297-304.
[7] Kurt Mehlhorn and Stefan Näher, LEDA: A Platform for Combinatorial and Geometric Computing, Communications of

the ACM. 38(1) (January 1995) 96-102.
[8] Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, (Cambridge University Press, New York, 1995).
[9] James D. Murray and William vanRyper, Encyclopedia of Graphics File Formats, (O'Reilly & Associates, Inc.,

Sebastopol, CA, 1994).
[10] Marc A. Najork and Marc H. Brown, Obliq-3D: A High-Level, Fast Turnaround 3D Animation System, IEEE

Transactions on Visualization and Computer Graphics. 1(2) (June 1995) 175-93.
[11] Richard E. Neapolitan and Kumarss Naimipour, Foundations of Algorithms, (D.C. Heath and Company, Lexington,

Massachusetts, 1996).
[12] Soo-Chang Pei and You-Shen Lo, Color image compression and limited display using self-organization Kohonen map,

IEEE Transactions on Circuits and Systems for Video Technology. 8(2) (April 1998) 191-205.
[13] Paula J. Reitan, Visualization of Truecolor Image Histograms, in COMPUGRAPHICS ’97, (GRASP, Vilamoura, Portugal

1997) 320-9.
[14] Edward M. Reingold and John S. Tilford, Tidier Drawings of Trees, IEEE Transactions on Software Engineering. 7(2)

(March 1981) 223-8.
[15] Evgeny Roytman and Craig Gotsman, Dynamic Color Quantization of Video Sequences, IEEE Transactions on

Visualization and Computer Graphics. 1(3) (September 1995) 274-86.
[16] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card, Cone Trees: Animated 3D Visualization of Hierarchical

Information, in Proceedings of CHI '91, (New Orleans, Louisiana, 1991) 189-94.

[17] Windsails on the Sand - Negril, Jamaica, in Carribean Professional Photo CD-ROM, (Corel, Ottawa, Canada, 1994).
[18] Jefferey A. Shufelt, Color Image Quantization Enhancement Techniques, CMU95-100, Computer Science Department,

Carnegie Mellon University, 1995.
[19] Tolga Tasdizen, Lale Akarun, and Cem Ersoy, Color Quantization with Genetic Algorithms, Signal Processing: Image

Communication. 12 (1998) 49-57.
[20] Ching-Yung Yang and Ja-Chen Lin, RWM-Cut for Color Image Quantization, Computers and Graphics. 20(4) (1996)

577-88.

Vitae

Paula J. Reitan is a Ph.D. candidate in the Computer Science and Electrical
Engineering Department at the University of Maryland, Baltimore County. Her
dissertation research is in the development of a heterogeneous 3D data structure for
color image quantization. In 1986 she received the B.S. degree in computer science
from the United States Naval Academy where she teaches part-time. She received
the M.S. degree in computer science from the Johns Hopkins University in 1987.
She is a member of the ACM.

